L’intelligence artificielle (IA) pour la promotion de la santé et la réduction de la maladie : Synthèse des connaissances 💙
Ce rapport a pour objectif d’explorer l’utilisation de l’intelligence artificielle (IA) pour la promotion de la santé et à la réduction de la maladie dans les pays de l’OCDE. Une revue rapide et une analyse de l’environnement ont été réalisées pour identifier les données probantes récentes sur la manière dont l’IA est utilisée dans la promotion de la santé et la réduction de la maladie.
Transforming Hospital Quality Improvement Through Harnessing the Power of Artificial Intelligence
Cette analyse explore l'utilisation de l'intelligence artificielle (IA) pour améliorer la qualité et la sécurité des patients dans les hôpitaux. Elle étudie l'IA en diagnostics et opérations cliniques, affectant directement et indirectement la sécurité des patients par l'efficacité opérationnelle et l'analyse prédictive. Les défis et perspectives futurs de l'IA en santé, incluant les considérations technologiques et éthiques, sont également examinés de manière critique.
Healthcare leaders offer perspective on AI procurement challenges
In a market filled with point source solutions, digital health leaders say decision-makers must cut through noise and hype to architect change management and manage costly technology. Vous y retrouverez plusieurs éléments pour alimenter votre réflexion sur l'intégration de l'IA dans vos organisations!
Implement a clear strategic plan for using advanced AI
Ran Balicer, CIO of Israel's Clalit Health Services, says leaders feeling pressured to adopt new AI tools should have a specific use case in mind and assess the readiness of their existing IT infrastructure and data. Une entrevue qui explique bien la réflexion à entamer avant de dire oui à un projet d'IA.
Barriers to and Facilitators of Artificial Intelligence Adoption in Health Care: Scoping Review
As adoption is a key factor in the successful proliferation of an innovation, this scoping review aimed at presenting an overview of the barriers to and facilitators of AI adoption in health care.
Balancing continuity of care and home care schedule costs using blueprint routes
This paper focuses on obtaining cost-efficient daily schedules over a longer time horizon, with balanced shift lengths, while ensuring continuity of care (using the continuity of care index).
Preference-based allocation of patients to nursing homes
Our research objective is to design an allocation model for waiting list management policies that is (i) easy to implement and understandable for healthcare employees, (ii) scalable as the number of patients and nursing home beds can be large, and (iii) able to combine the goals of retaining preferences best and keeping waiting times at a small level.
MedExpQA: Multilingual benchmarking of Large Language Models for Medical Question Answering
In this paper we present MedExpQA, the first multilingual benchmark based on medical exams to evaluate LLMs in Medical Question Answering. To the best of our knowledge, MedExpQA includes for the first time reference gold explanations, written by medical doctors, of the correct and incorrect options in the exams.
Development of a Data Model to Predict Nursing Workload Using Routine Clinical Data
Our approach is based on the use of artificial intelligence (AI) and machine learning (ML) to recognize key workload-driving predictors from routine data in the first step and derive recommendations for staffing levels in the second step.
A conversational agent for enhanced Self-Management after cardiothoracic surgery
This study aimed to develop a conversational agent to enhance patient self-management after cardiothoracic surgery.